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1. INTRODUCTION

Hearn and Lawphongpanich (1987) studied the ascent nature of

generalized linear programming (GLP) which is also known as the

dual cutting plane or primal column generation technique. In

particular, they examined the properties of the direction, doLP,

defined as the difference of two successive dual iterates

generated by GLP with respect to the Lagrangian dual function, L.

They showed that doLP is an ascent direction for L at points

where L is differentiable. At nondifferentiable points, the

column entering the master problem is not unique and an arbitrary

choice can make doLP a nonascent direction. To obtain an

additional insight on the ascent nature of doLp, they also showed

that doap is a solution to a direction finding problem for L.

In this paper, we introduce a new class of direction finding

problems and showed that it includes the one which produces dGL,.

This class of problems contains direction finding problems which

always produce ascent directions as well as those that do not,

e.g., the doLP direction finding problem. In order to improve the

rate of convergence of GLP, we replace the dQ p direction finding

problem with another from this new class. This new direction

finding problem which we describe below guarantees to produce

ascent directions and is similar to the one used by Demayanov for

the minimax problem. Moreover, a line search step is also

included in this modification of GLP. Hearn and Lawphongpanich

(1987) indicated via a numerical example that a line search step

reduces the number of iterations for GLP.



For the remainder of the paper, we state GLP algorithm in

both the cutting plane and the column generation form and define

the associated Lagrangian dual problem in Section 2. Then,

Section 3 describes the new class of direction finding problems.

Finally, we present the modification of GLP and its convergence

analysis in Section 4.

I
I
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2. PRELIMINARIES

Consider the primal problem:

P1: f* = min f(x)
x

s.t. g(x) -1. b,

x E X,

where f is a continuous real-valued function, g is a continuous

function from R" to R" , X is a nonempty compact subset of Ra, and

b is a vector in R4. The Lagrangian dual of (P1) is:

Dl: L* = maximize ( L(u) : u Z 0, u e RE )

where L(u) = minimum (f(x) + u[g(x)-b] : x c X), and xy denotes

the usual dot product between vectors x and y.

When L(u) is relatively easy to evaluate, the pair of

problems, (P1) and (Dl), can be addressed by GLP. Below we state

the algorithm in the dual cutting plane form (Zangwill, 1969).

The Dual Cutting Plane Algorithm

Step 0. Find a point xG e X such that g(xo) < b. Let k = 1, and

go to Step 1.

Ste1 Solve the k-th master problem:

Ml: max w
(w,u)

s.t. w f(x,) + u[g(xi)-b] for i = 0,... ,k-1

u> 0



Let (Wk,uk) be an optimal solution and go to Step 2.

Stea . Solve the k-th subproblem:

Si: min { f(x) + uk[g(x)-b] : x s X )

Let xk be an optimal point, and let L(u) = f (xk) +

uk[g(xi)-b]. If wu = L(uk), uk is an optimal dual

solution. Otherwise, if wk > L(uk) , then replace k by

k + 1, and go to Step 1.

The k-th master problem (Ml) is a linear programming problem

with the following dual:

k-i
M2: min I nf (x)

n i=O

k-i
,,s-t. X nigx NO b

i=O

k-Iz- n = 1,

i=O

R, k 0 for i = 0,... ,k-1

When (M2) replaces (Ml) in Step 1, the resulting algorithm

is generally known as Dantzig-Wolfe decomposition (1960, 1961),

column generation or GLP. Geoffrion (1970) also classifies the

algorithm in the cutting plane form as the strategy of outer

linearization and relaxation, or, in the column generating form

as the strategy of inner linearization and restriction.



3. A CLASS OF DIRECTION FINDING PROBLEMS

Consider now a feasible direction scheme for solving (Dl).

At a given feasible point uk and a parameter a. one possible

direction finding problem is

DF1: Max [g(xk)-bJ(v-uk)
v

s.t. a s L(v),

V 1 0,

where xk is a solution of (Sl), so that [g(xk)-b] is a

subgradient of L at uk. The first constraint of (DFl) requires

that v be in the level set of L as defined by a. If a > L(uk),

any feasible solution v to (DFi) would produce an ascend

direction of the form v-uk, and the best value for a is L*.

Figure 3.1 illustrates an instance of (DF1) in which a is set to

L(uk) (= 7.0 ) and the optimal solution of the resulting problem

is denoted by vk. Note that the direction vk-uk is an ascent

direction for any choice of subgradients.

In practice, L(v) must be approximated since it is not

always available in closed form. Each different approximation

would yield a different direction finding problem. Similarly, the

different choices for a and xk would also yield different

direction finding problems. To ensure that Vk-Uk is an ascent

direction, the approximating function along with the value for a

and the vector xk must be carefully chosen. Below, we examine two

different direction finding problems derived from (DF).
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Ficiure 3.1: An illustration of direction finding problem (DF 1)



First, we consider the direction finding problem associated

with GLP in the cutting plane form. From the master problem (Ml),

it is clear that the approximation of L is

LAX(v) = min ( f(xi) + v[g(xi)-b]: i=O,... ,k-1 ).

Then, Hearn and Lawphongpanich (1987) showed that uk.,, the

solution to the (k+l)-st master problem, solves the following

problem derived from (DFl):

DF2: max [g(xu)-b](v-uc)
v

s.t. wlc . LAX(v),

v k 0,

where wk.,, the optimal objective function value of the (k+l)-st

master problem, replaces a. Define X(uk) as the set of solutions

to (Sl). When X(uk) is a singleton, L is differentiable at uk,

and [g(xk)-b] is the only choice of 'subgradient' for the

objective function of (DF2). However, when X(uk) is not a

singleton, L is nondifferentiable and the choice of objective

functions becomes infinite. Moreover, an arbitrarily chosen

subgradient could result in (DF2) generating a nonascent

direction as shown in Hearn and Lawphongpanich (1987). Below, we

consider a second direction finding problem in which [g(xk)-b] is

replaced with a set that includes the subdifferential of L at uk.

Assume that X can be represented by a finite discrete set

(y ..... yT). For example, when (P1) is a bounded integer program,

then X is itself a finite set of vectors with integral elements.

, ,' - , - -, - -- N' ' w ., .fy( .4 -/ .. ..- o '.-, ,, %.- . . - - .. . - . --...- .-



Then, X(uk) is a finite discrete set. For the discussion below,

define for any u 1 0

Xa(u) = ( yj: f(yj)+u(g(yi)-b) & L(u) + s, yj X ,

that is, X.(u) is the set of all E-approximate solutions of (Si).

When e = 0, Xo(u) is simply the set of solutions to (SI) which is

previously denoted as X(u). Since L is concave, the s-

subdifferential of L is well defined and can be written as

follows (see, e.g., Clark, 1975; Kiwiel, 1985; Lemarechel, 1980;

and Zowe, 1987):

S.L(u) = (h: L(v) I L(u) + h(v-u) + e, V v z 0

Similarly, when E = 0, SoL(u) = 6L(u) , the subdifferential of L

at u, and &L(u) is also equivalent to conv( [g(yj)-b]: yi c

X(u)), where conv() denotes the convex hull of a set. Below,

Theorem 3.1 relates X.(u) to the e-subdifferential of L(u).

Theorem 3.1: Conv{ [g(yi)-b]: yj z X.(u) ) is a subset of 6.L(u).

r__oof.: For every v > 0 and for each ys E X.(u)

.L(u) + [g(ya)-b](v-u) = L(u) - [g(yi)-blu + [g(yj)-b~v

f(yj) - c + [g(yj)-bIv

a L(v) - c, or

L(u) + [g (yj) -b] (v-u) + c L(v), (3.1)

where the first inequality follows from the definition of X.(u)

and the second inequality from the definition of L. Since

. . - --' .- -" •." "e ' " "" " " " "e"= " ". "" ." " --'. .-''-..""'"-"''" -" " " " '." " 'I-



equation (3.1) holds for all yj e Xv(u), it must hold for all

convex combinations of yj e X.(u), and the theorem follows.

Given the above definitions, (DFI) can be modified as

follows:

DF3: max min [g(yj)-bJ(v-ux): yj e X.(uk) )

s.t. L(uk) LA2(v)

V 0,

where

LA2 = min { f(x) + vlg(x)-b]: x e MI - U {xo} ), and

k- 1

MI - 1 = any subset of U X.(u*).
i=1

If X(uk) replaces Xv(uk) in the objective function of (DF3) , the

'min' part in the objective is the expression for the directional

derivative of L at uk in the direction (v-uk) . Note that (DF3)

can be written in the cutting plane format as follows:

DF4: max w

s.t. w s [g(yj)-bJ(v-uk) V yJ E X.(uk)

L(uk) f(x) + v(g(x)-b) V x E Mk'- U {Xo}

v 0.

Under the assumption that X is a finite discrete set, L(u)

can be equivalently written as a minimum of a finite number of

linear functions. Then, (DF3) and (DF4) resemble the direction

finding problem of an algorithm proposed by Demyanov (see,

Demyanov and Malozemov, 1974, and Lemarechel, 1980) in that they

require a full knowledge of the £-subdifferential. However,



Demyanov's direction finding problem is nonlinear whereas (DF4)

is linear.

As stated in (DF3) , M - 1 can be any subset of the union of

the previously calculated e-subdifferentials. Theoretically, M - 1

can be an empty set and the algorithm to be presented in the next

section would still converge. However, taking M" -' as an empty

set means that L(v) is approximated by only one hyperplane

defined by Xo. In practice, this may not yield good directions.

Thus, the choice of the set M3- 1 should allow a good

approximation of L(v) and, in turn, its contours in the

neighborhood of ux.



4. An Ascent Algorithm and its Convergence

The algorithm below is a modification of the cutting plane

algorithm in which we replace the master problem (Ml) with the

direction finding problem (DF3) [or, equivalently, (DF4)] and add

a line search step.

An Ascent Algorithm

jR0. Let Xo c X satify g(xo) < b. Select u, k 0 and compute

Xo(ut). Set MO = 0 and k = 1.

Step 1. (Direction Finding) Solve problem (DF3) (or,

equivalently, (DF4)) and let wk denote the value of the

optimal objective function, and vk denote the solution. If

wu : 0, stop and uk is an optimal solution. Otherwise, go to

Step 2.

SteR 2. (Line search) Solve

L(uk + tk(Vk-Uk)) = max( L(uk + t(vk-uk)): 0 - t 1 1
t

and set uk.x = uk + tk(vk-uk). Go to Step 3.

Step 3. (Evaluate L(uk.1)) Solve the subproblem (Sl) and

construct the set X.(uk.1). Set k = k+l, and go to Step 1.

In Step 0, the point Xo satifies the Slater constraint

qualification, and by construction Xo is included in the

approximating function LA2. This prevents vk from being unbounded

since v[g(xo)-b] -> -w as if any component of v goes to w. For

the convergence analysis below, it is assumed that the set (u: a



a__ _ _ _ 1- W- I-'-- .'-- M ... .. .

< L(u)) is bounded for all a. Thus, uu is bounded for all k as

we 1.

The first three theorems justify the direction finding

problem (DF3).

Theorem 4.1: uu is a solution to (Dl) if and only if uk solves

(DF3).

Proof: For convenience, assume that

1) X(uh) =yi,.. y

2) X.(uk) = (yi,.. . ,yp,ypy,. ,yq), and

3) -  = (x i,... ,xal.

where p I q and q < T.

Let uk be a solution to (Dl). Then, there exists a (n,c)

satisfying the following Karush-Kuhn-Tucker (KKT) conditions:

p m

I nj[g(y)-b] + Z a3.e, = 0
j=l r=1

p

j=1

C(I- [uU 0, r = 1...,m

n and a 1 0.

where ev is the r-th unit vector in R"1 and [z1 v denotes the r-th

component of the vector z. Given this pair of multipliers, (,a) ,

define the triplet (n',.',a') as follows:

n = = =, j = I..... p



=0, j =p+l,..,

is 0, i = ' . '

a...~ r 1,.,m

Then, (r,'')satisfies the following KKT conditions for (DF3)

at the paint uc:.

q c m
I n;[(yi)-bJ + M 01[g(xi)-bJ + 2 ca.ev 0
jl i1l r1l
q
2:R =1

j=l

01(g(xi)-b] =0

=0

* n', 5',and ag' 0.

Since uu is feasible to (DF3) , ux must be optimal to (DF3) as

well1.

Assume that ux solves (DF3). Then, there exists a W 5,'

satisfying the above KKT conditions for (DF3). Since nr' and 5'

are nonnegative and Min; 1, we can define

a Min +Za

n; ,r/a, j 1..,~~,

=5 15/a, i=1,.

a; a/a. r 1,.,m

Then, is an optimal set of multipliers at the point

(z,v) = (Lu) ,u) for the following problem which is related to

(DF4):



DF5: max z

g.t. z % f(y) + [g(y)-b]v, j = 1 .... ,p,p+l .... q

z < f(xi) + [g(xi)-blv, i = 1,...,

V > 0,

that is, (L(uk),uk) solves DF5. However, note that (Dl) can also

be written as:

D2: max z

s.t. z - L(v)

v > 0.

Then, (DF5) is a relaxation of (D2). Since (L(uk) ,uk) solves

(DF5) and is feasible (D2), it must be optimal to (D2) .f

Theorem 4.2: If uk does not solve (Dl), then

rain( [g(yj)-b](vkc-uc) : yj e Xw(uk) ) > 0,

where vu solves (DF3).

rfL: By Theorem 4.1, uu does not solve (Dl) implies that uk is

not a solution to (DF3). However, uu is still feasible to (DF3),

so the following inequality must hold:

min( [g(yB)-b(vu-uk): yj s X.(uk) )

= max (min( [g(yJ)-b](v-uk): yi E X.(uk) 3)

v feasible

> min( [g(yj)-b](uk-uk): ya e X.(uk) } = 0.1

It should be noted that the above two results also hold when

LAZ(v) is replaced by the actual Lagr-angian function L in (DF3).

L
V . -~-. - ,- *%* q - ~ ;|



The following series of lemmas and a theorem demonstrate

that the ascent algorithm above converges to an optimal solution

of (DI). Furthermore, they are similar to the standard argument

for establishing convergence of feasible direction algorithms in

nonlinear programming.

Lemma 4.3: There exists an e > 0 such that if ux -> u*, then

X.(uu) = X(u*) , for k sufficiently large.

ProofL: Let X(u*) =(yi,. . .,yJ. Define

i) hi(u) =max (f(yj) + u~g(yj)-bJ:j 1..,p

ii) h2 (u) =min (f(yB) + ulg(yi)-bJ: j=p+l,. . .,T)

iii) a = [h3.(u*)+h2Cu*) J/2

At u*, the following hold:

A) hi(u*) = L(u*) = f(yi) + u*[g(yi)-bJ, j =1....P

B) hi(u*) < a~ < h2(ue)

C) a = [a- hi(u*)J > 0

From the continuity of hi(u), h2 (u), and L(u), there must exist

an integer K sufficiently large so that for every k Z K

D) Ihi(uu) - hi(u*)l < a/2

F) for J = 1,...,'p

lf(ys)+u3h[g(ys)-bJ - L(u*)I

* - lf(yj)+Uk~g(yj)-bJ - f(y.*)-u*[g(yi)-blj

< oa/4.

0) h2(uk) > (X.



From (E) and (F), we have that for J 1,..

lf(yJ)+Uk((yJ)-b) -L(uk)l

Sjf~ys)+uk~(ys)-b] -L(uI.)I + IL(u*) - L(Uk) I

and since L(uk) f(yj) +ukdg(yj)-b], V J, it follows that

lf(yj)+uu~g(yi)-bJ -L(uac)I f(y,)+uudg(y.)-bJ -L.(uu) 1 a/2, or

f (yj)+uu~g(y.J)-bJ L(uu)+o/2.

Thus, for any s between (1/2)a and (3/4)a,

f(y.,) + uk~g(ys)-bJ S L(uk) + c, for .i... ,pt (4.1)

that is, y,, is an element of Xw(ukc) for J = 1....,p. Moreover,

from (E),

L (uk) S L(u*) + a/

L(um) +9 E S L(u*) + ay/4 + e

4 L(u*) + a

(f(y.)+uk~g(yJ,)-bJ, for J =p+l,... ,T. (4.2) '

where the third inequality follows the above selection of c, the

equality from (C) , and the last inequality from (G) and theI

definition of h 2 (u). This means that yj does not belong to

X.(uk). for J =p+1,...,T. Therefore, XW(uU) X(u*).

11
111 - - '
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Lemma 4,4iL: For a given direction d,

min( gd: g* E conv(Cg(yj)-bJ: i =1,....,p)

-min( (g(yj)-bld: j 1 1,... Pp I

Proof: The result follows from the fact that the problem on the

left hand side can be stated as a linear program

p
min I ([g(yj)-b~d)ns

j=1

p

k 0, j ...=p

which always yields an extreme point solution.

Lemma.5: If Xw(uu) = (yz,. . .,y,I and mmn( [g(yi)-bld:j

1....,p ) ) 0, then ther'e exists a -r > 0 such that

L(uk+od) k L(uu)+amin( (g(yi)-bld: j =1..,

for all 0 .5 a T

P.roof: Assume without loss of generality that

0 < Cg(yi)-bld =min( Cg(yj)-b~d: j=1..,

Define

(f~,,)u~gyi)bl- L.(u)k)) for all j such that
,r=min (f(YJ)+ - S(y.J)J ,g(y,)d ) g(y4 )d & ~j E.U.

and observe that i > 0 since

f(y.,) + u~g(yj)-bJ > L(Uk) for J Xcu)



and [g(y 1 )-g(yj)ld > 0 by construction. Thus, for any 0 < a <

and every j x X.(uk) and g(y,)d ) g(yj)d

(f(yB) + uu[g(y)-b] - L(uk)

(g(yi) - g(yB)'d

o[g(y,)-b - g(yj)+bld 4 f(yj) + uutg(yj)-b] - L(uu)

L(uk) + a[g(yi)-bld < f(ys) + (uu+ad)[g(uj)-b] (4.3)

However, for 1 9 Xw(uk) and 0 < [g(yi)-bjd I [g(yj)-b3d

L(uu) < f(yj) + uk[g(y)-bJ

- L(uk) + a[g(y,)-bld < f(yj) + (uk+d)[g(yj)-b] (4.4)

and for j e X.(uk)

L(uu) < f(yj) + uk[g(yi)-b]

L(uk) + o[g(y0)-b~d < f(y) + (uu+ad)[g(yj)-b]. (4.5)

Combining (4.3), (4.4) and (4.5), we have that for 0 < a < 1

L(uu) + a[g(yi)-bld m min( f(yj)+(uk+ad)[g(y,)-bJ: j=1 ... T)

= L(uk+cd).

Lemmaj4_: Assume that E is chosen as in Lemma 4.3 and the

algorithm generates a sequence (uu). Then, there cannot be a

subsequence (uu), k a 9, with the following properties:

i uk ->u., k s 5,

ii) vk-) V.., k e Q, and

iii) min( g(v.-u.): g" c conv([g(y)-b]: y E X(u.)) ) > 0,

where 0 is a subset of (1,2,3 ....

E



Proofj: Assume that X(u.) = (1,... ,P). By (iii) and Lemma 4.4,

min( g*(v.-u.): g' e conv([g(y)-bJ: y e X(u.)) )

= min ( Eg(y 4 )-b(v.-u.): j = 1,... ,p 5 > 0.

From Lemma 4.3, there must exist a K1 sufficiently large such

* that X.,Cuu) = (1,... ,p} for some k k K1 and k c Q. Since the get

* (1,... .p) is finite, there must exist a index j* such that

j= arg min( [g(yj)-bJ(vk.-uu): i = ,. p)(4.6)

infinitely often. Define C2 to be the subset of 51 for which j* is

the index which yields the minimum value for the right hand side

of (4.6). For convenience, we assume that j* = 1. Then, we have

that

Lim [g(yz)-bJ(vu-uu) = g(y1,)-bJ(v.-u.) = 0 > 0,
k s C21

and it follows that there exists K 2 K1 such that

[g(yx)-bJ(vu-uu) ) 5/2 for k k K 2 and k e C22. (4.7)

Thus, at ukc the direction (Vk-Uk) is an ascent direction.

Moreover, since u)C., maximizes L(u) along the direction (vIk--uk),

L(uu.%) 2: L(usc + a(vk-ux)) for 0 < a < T and k s 0

k LWuO + a~g(yl.)-bJ(vk-usk) for 0 < a < i and k e 01

a LWuO + (a13)/2 for 0 < a < i and k e 01, (4.8)

where 'r is as defined in Lemma 4.5 and the last two inequalities

follow from Lemma 4.5 and equ. (4.7) . Letting k approach infinity

on the subsequence 01, (4.8) yields

* - r -* * *~,. * .*,*. * ~ ~P



L(u-) k L(u.) + (Co')/2

which is a contradiction since both a and 5 are positive.E

Thegrem 4.7: Assume that s is chosen as in Lemma 4.3. If the

algorithm generates a sequence (uk), then it must converge

to an optimal solution of (D).

ProofQ: Assume that the algorithm generates an infinite sequence

of points and none of which is a solution to (D1). Since (uk)

lies in a bounded region, there must exist a convergent

subsequence, i.e., uk -> u., for k s 9, where 0 is a subset of

(1,2,3 ,...) and u. does not solve (Dl).

Assume that X(u.) = (1,... ,p). By Lemma 4.3, Xc(uu) = X(u.)

for k sufficiently large, i.e., k k K,, thus Xw(u.) = X(u.).

Since u. is not a solution to (DI),

0 < 5. = max min( [Cg(y)-b](z-u.): j = l....p }
z

8.t. L(u.) L(z)

z 0.

For k > K, define

DF6: max min( [g(y)-b3(z-uu): j = 1,...,p I
z

s.t. L(uu) LWz

z > 0 .

Note that Ok varies continuously with uk. Thus, k -> 0. for k e

5 and k k K,.

7'



Now, let vu be a solution to (DF3) defined at uu. Then, by

construction, vk is bounded and there must exist a subset, Q1 , of

Q such that vu - v. on 01. Moreover, since (DF3) is a

relaxation of (DF6),

Ou - min( [g(yj)-b](vu-uu): J = l....p ), (4.9)

for k k K, and k c 1. From the finiteness of of the set

{, .. ,p), there must exist an integer j* such that

j* = arg min( [g(yB)-b](vu-uu): i = 1,... p ) (4.10)

infinitely often. Let Q2 be a subset of Q1 for which j* is the

index which minimizes the right hand side of (4.10) and for

convenience assume that j* = 1. Then, combining (4.9) and (4.10)

gives

[g(y,)-b](vu-uu) k Bu for k Z K, and Q2 .

Taking the limit on both side with respect to Q2, we have that

lim [g(y,)-b](vk-uk) = [g(yi)-b](v.-u) 2 13. > 0

which contradicts Lemma 4.6. 1

Therefore, if the algorithm terminates after a finite

number of iterations, Theorem 4.1 and 4.2 guarantee that uk

solves (Dl). Otherwise, the algorithm generates an infinite

sequence which, by Theorem 4.7, converges to an optimal solution

of (Dl). Also, it is interesting to note that although the

algorithm uses c-subdifferential in calculating its ascent

directions an exact optimal solution can be obtained by choosing
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c correctly. In general. one expects algorithms using an E-

subdifferential to produce s-optimal solutions. possibly in a

finite number of iterations. We consider this type of algorithms

in a separate study to appear later.
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